Oxidation Behavior of a Pd43Cu27Ni10P20 Bulk Metallic Glass and Foam in Dry Air

نویسنده

  • W. KAI
چکیده

The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 C) to 623 K (350 C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T< 523 K (250 C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ‡ 523 K (250 C) followed a parabolic-rate law, and the parabolic-rate constants (kp values) generally increased with temperature. It was found that the oxidation kp values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ‡ 548 K (275 C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T £ 548 K (275 C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd2Ni2P, Cu3P, and Pd3P.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explanation of the differences in diffusivity of the components of the metallic glass Pd43Cu27Ni10P20.

Bartsch et al. [Phys. Rev. Lett. 104, 195901 (2010)] reported measurements of the diffusivities of different components of the multi-component bulk metallic glass Pd43Cu27Ni10P20. The diffusion of the largest Pd and the smallest P was found to be drastically different. The Stokes-Einstein relation breaks down when considering the P constituent atom, while the relation is obeyed by the Pd atom o...

متن کامل

Compressibility and Foaming behavior of steel slag/waste glass compositesby particle size distribution and foam agents

In present research, the foam glass-ceramic composites fabricated by window glass, steel slag and SiC, CaCO3 foaming agents were investigated by press–sintering method. The optimum sintering temperature was obtained at 1200°C with a 3-minutes holding time and 20°C/min heating rate. The optimum pressure level of 80 MPa for achieving the 70 % of relative density was selected. The effec...

متن کامل

Processing of Bulk Metallic Glass Foams by Melt Infiltration Techniques

Processing of bulk metallic glass (BMG) foams, using melt infiltration techniques, is reported for the first time. Foaming methods based on infiltration of two types of pattern materials are described: investment of a continuous refractory yielding very low relative density structures (5% dense relative to the BMG), and investment of a discontinuous refractory pellet bed yielding higher relativ...

متن کامل

Electrophoretic deposition of MnCr2O4 coating for solid oxide fuel cell metallic interconnects

In the present study, Mn - Cr spinel powder was synthesized through a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the MnCr2O4 spinel, as an oxidation-resistant layer, on SUS 430 stainless steel in a potential of 300 V/cm. The coated and uncoated samples were then pre-sintered in air at 900 °C for 3 h followed by cyclic oxidation at 800 °...

متن کامل

Acoustic emissions analysis of damage in amorphous and crystalline metal foams

Acoustic emission methods are used to investigate the nature and evolution of microfracture damage during uniaxial compression of ductile amorphous and brittle crystalline metal foams made from a commercial Zr-based bulk metallic glass, and to compare this behavior against that of aluminum-based foam of similar structure. For the amorphous foam, acoustic activity reveals evolution of the damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010